SMILE24:電子飛跡検出型コンプトンカメラが持つ 偏光撮像性能の評価試験

古村翔太郎

谷森達, 窪秀利, 高田淳史, Parker Joseph,水村好貴,水本哲矢, 園田真也, 友野大,中村輝石, 松岡佳大, 中村祥吾,岸本哲郎, 小田真, 竹村泰斗, 宮本奨平,中増勇真,吉川慶 (京都大学) 身内賢太朗(神戸大学), 黒澤俊介(東北大学), 澤野達哉(金沢大学)

Contents

- 1. MeVガンマ線天文学の現状・課題
- 2. ETCCのコンセプト
- 3. Current and near-future ETCC
- 4. 偏光検出器としての応用
- 5. 偏光ビーム試験@SPring-8 2015年1月

Summary

Problems in MeV gamma-ray astronomy

Electron-Tracking Compton Camera (ETCC)

By measuring electron tracks, ETCC overcome the problems !

- Well-defined PSF without ML-EM
- Powerful BG rejection using dE/dx
 - No shield => Wide field of view ~ 6sr

T.Tanimori et al., *ApJ* (2015) accepted, arXiv: 1507.03850 [astro-ph.IM]

Current and near-future performance

as a Polarimeter

Minimum detectable polarization (MDP)

מתע	429	AS + B	99%	А	Effective area [cm ²]	S	Signal [cm ⁻² sec ⁻¹]
MDP =	ASM 1	<i>T</i>	CL	Μ	Modulation Factor	В	Background [sec ⁻¹]
[%]	N			Т	Observation time [sec]		
$B \gg AS \Rightarrow MDP \propto \frac{\sqrt{B}}{AS}$ Sensitivity is limited by the backgrou							ackground rate.

Large
advantage✓Powerful background rejection
✓faint sources,
transient objects (GRBs)

Beam test@ SPring-8 BL08W

Geant4 Simulation

		再構成スペクトル
Geant4	Geant4 10.1 Patch-02	(AI散乱事象)
物理モデル	G4EmLivermorePolarizedPhysics (Fixed G4UrbanMscModel)	
ジオメトリ	SMILE-II フライトモデル準拠	G4 sim.
位置分解能	Scinti.のpixel sizeのみ	0.8 最大値で規格化
エネルギー 分解能	TPC 22%@22 keV, Scinti. 10%@662 keV のガウス分布	0.4
その他	回路応答、解析特性は未考慮	0 100 200 300 [keV]

Results

Summary

- Well-defined PSF without ML-EM
- Powerful background rejection by dE/dx
- Polarization Measurement
- M ~ 0.6@200 keV, ~0.5@500 keV (simulation)
- Future Plan: SMILE-III ETCC (~20 cm² @200 keV)
 - ✓ Polarization sensitivity : 3σ MDP
 Crab nebula ~ 15 %, Cyg X-1 ~ 20 % (half-day flight)
 GRBs ~ 6% for 10⁻⁶ erg/cm² s (2-3 GRBs/month)
 ~ 20% for 10⁻⁷ erg/cm² s (~10 GRBs/month)

