SMILE19: 次期気球実験に向けた 偏光観測シミュレーション

古村 翔太郎

高田淳史, 澤野達哉, 岩城智, 窪秀利, 松岡佳大, 水本哲矢, 水村好貴, 中村輝石, 中村祥吾, 小田真, Parker Joseph, 園田真也, 谷森達, 友野大(京都大学), 株木重人(東海大学), 黒澤俊介(東北大学), 身内賢太朗(神戸大学)

電子飛跡検出型コンプトンカメラ (ETCC)

反跳電子の3次元飛跡も測定
◆ アーク状に到来方向制限
◆ dE/dxで粒子識別

α角で運動学的テスト

高品位イメージング & 高効率の雑音除去

<u>SMILE-II 気球搭載用 スペック</u>

- ▶ (30 cm)³ TPC + 108個のGSOシンチアレイ
- ▶ ガス Ar 95% + iso-C₄H₁₀ 2% + CF₄ 3%, 1 atm
- ▶ 有効面積 0.7 cm² @ 356 keV
- ➤ ARM 5.3° @ 662 keV

Crabを4時間で5σ検出可能(高度40km)

ガス種·ガス圧変更 → 有効面積~10 cm² + シンチ増強 (SMILE-III)

ETCC 雑音除去能力の実証

2通りの試験で、撮像 & Signal 強度の定量評価に成功!

- ▶ 超微弱線源 (S/N~0.005, Crab観測の半分以下)
 ▲ Gignalを落とさずNoise除去 @ 松岡講演
- ◆ 陽子ビームを用いた高雑音環境 (気球実験の約5倍)
 高NoiseでもSignal識別
 @小田講演

到達予想 感度

宇宙雑音環境においても感度を維持

- ➢ SMILE-II, SMILE-III 気球実験でCOMPTELと同等以上の感度
- ➢ Satellite-ETCC

1mCrab程度の天体 ~ 千個程度の検出期待

天体偏光観測の可能性

NEXT ⇒ X線-ガンマ線偏光観測

X線ーガンマ線偏光観測

<u>偏光観測の意義</u>

- ◆ 偏光の発生: 散乱、磁場、強重力場
- ◆ パルサー、SNR、GRBの放射機構] モデルにより異なる偏光度・偏光方向の予測 BH降着円盤の幾何学構造 」 高エネルギー天体現象を探る良いプローブ

<u>偏光観測の現状</u>

軟X-軟ガンマ線で 定常天体の観測例が少ない 感度不足

検出器	帯域	天体
OSO-8 (Weisskopf+1976,78)	2.6 keV, 5.2 keV	Crab Nebula
INTEGRAL / SPI (Dean+2008)	100-1000 keV	Crab Nebula
INTEGRAL / IBIS (Forot+2008)	200-800 keV	Crab Nebula
INTEGRAL / IBIS (Laurent+2011)	400-2000 keV	Cygnus X-1

定常天体の偏光観測プロジェクト

GEMS, PolariS, PoGOLite, ASTRO-H, ...

> 200 keVで感度を持つ検出器は ASTRO-H / SGD のみ

SMILE / ETCC (150-1000 keV) は 偏光観測可能か?

ETCC偏光測定

- ◆ 考慮 ジオメトリー、シンチのpixel分解能
- ◆ 未考慮
 散乱点分解能、エネルギー分解能、雑音

Geant4	Geant4 10.0 Patch-01 (最新版)
Physics Model	G4LivermorePolarizedComptonModel
ジオメトリー	(30cm) ³ TPC + 108個のシンチアレイ ※ SMILE-II と同じ
ガス	$CF_4 40\% + Ar 54\% + C_2H_6 6\%$, 1atm

Geant4 シミュレーション モジュレーションファクター算出 散乱ガンマ線 2次元ベクトルマップ @ 200keV, 天頂方向から平行光

- ▶ 無偏光時は、シンチレータ配置によるモジュレーション
- ▶ 100% 偏光では、異なる周期でモジュレーションがはっきり確認できる

Geant4 シミュレーション 結果

レスポンス補正後 (binごとに割り算) @ 200 keV, 天頂方向から平行光

フィット関数 $A\sin(2\phi - \phi_0) + B$ フィット結果から M算出 $M = \frac{N_{max} - N_{min}}{N_{max} + N_{min}}$

低エネルギー側 $(E \leq 200 \text{ keV})$ M > 0.5

高エネルギー側でも、 $(E \leq 650 \text{ keV})$ M > 0.4

最小偏光感度の見積

SMILE-II / SMILE-III 10時間観測 @高度40 km

	有効面積@200keV\天体	Crab 150-950 keV	Cyg X-1 150-950 keV
	SMILE-II ~ 1 cm^2	73%	
gas 1 atm ⇒ 3 atr	$\sim 5 \text{ cm}^2$	31%	47%
CF ₄ gas 3atm & Scinti. 2R.L.	SMILE-III ~ 12 cm^2	19%	29%

SMILE-III 10時間で Crab、Cyg X-1 偏光観測可能!

まとめ

◆ ETCCの雑音除去能力 宇宙雑音環境でも高感度

◆ 偏光観測に有利

単純構造で系統誤差が小さい 雑音除去で高い最小偏光感度を維持

 $E \leq 200 \text{ keV} \quad M > 0.5 \quad (\text{ zenith } \theta < 60^{\circ})$

 $E \leq 650 \text{ keV} \quad \mathbf{M} > \mathbf{0.4}$

◆ 気球実験で Crab, Cyg X-1 偏光観測可能!

~12 cm² @200 keV 10時間、高度40km

MDP	Crab	~ 19%	(150-950 keV)
	Cyg X-1	~ 29%	(150-950 keV)

▶ 今後

- ▶ 検出器応答を考慮した詳細なシミュレーション
- > 実機試験
- ▶ TPC圧力容器 & シンチ配置の改良

