電子飛跡検出型コンプトンカメラにおける 飛跡取得アルゴリズムの改良 IV

古村翔太郎^A

谷森達^A 窪秀利^{A, B} Parker Joseph^A 水本哲矢^A 水村好貴^A 友野大^A 岩城智^A 澤野達哉^A 中村輝石^A 松岡佳大^A 中村祥吾^A 小田真^A 園田真也^C 身内賢太朗^D 高田淳史^E 岸本祐二^F 株木重人^G 黒澤俊介^H 田中真伸^{B, I} 池野正弘^{B, I} 内田智久^{B, I}

京大理^A Open-It^B 京大工^C 神戸大理^D 京大生存圏研^E KEK放射線科学センター^F 東海大医^G 東北大金属研^H KEK素核研^I

本講演の位置づけ

先の2講演

22pSD-4(松岡) 30cm角µPICを用いた電子飛跡検出型 コンプトンカメラ(ETCC)の開発

22pSD-5 (高田)

大面積Micro Pixel Chamberの開発 9

30cm角ETCCで採用されている

- ・飛跡取得アルゴリズム
- ・飛跡解析の手法
- → 小型試験機での性能評価

開発されたガス飛跡検出器 シミュレータを用いた

・飛跡解析手法の検証開始

についてお話します

電子飛跡検出型コンプトンカメラ(ETCC)

Electron-Tracking

新アルゴリズム用飛跡解析 …… とにかくシンプルに

性能評価@試験機

ガス飛跡検出器 μ-TPC シンチレーションカメラ

662keV±10%

簡単なカットのみでBG除去可能

角度分解能(FWHM)

- 新アルゴリズム実測値
- 旧アルゴリズム実測値
- ▲ シミュレーション値 (ジオメトリ&物理過程のみ)
- ・旧アルゴリズムより、**5-10倍向上**
- ・シミュレーションと30%以内で一致

→ 精度の良い予測可能に

 ARM …検出器の原理限界まであと 1-2°
 SPD … 従来は 90°-200° ばらつき 現在は安定して 90°-100° 達成 多重散乱_{RMS} ~40°(@40keV、5mm) 改善の余地は大いにある

ガス飛跡検出器 μ-TPC シミュレーション

Garfield++ を用いたガス飛跡検出器 μ-TPC シミュレーション

▶ 662keV ガンマ線入射 シミュレート...... 飛跡解析手法の評価・検証

Gas	Ar $+ C_2 H_6 (10\%)$ 1.0atm	Drift	V_{drift} = 3.2 cm/µsec
Volume	$10 \text{ x} 10 \text{ x} 14 \text{ cm}^3$	Gain	~ 24000
 電子飛跡のほか、 真の軌道、Energy Deposit は 既知 シンチレーションカメラの応答は未実装 エネルギー分解能・位置分解能 無限大 			

ガス飛跡検出器 μ-TPC シミュレーション ★ コンプトン散乱点

ガス飛跡検出器 μ-TPC シミュレーション ★ コンプトン散乱点

ガス飛跡検出器 μ-TPC シミュレーション ★ コンプトン散乱点

飛跡解析検証 …… シミュレーションに飛跡解析手法を適用

現在のdE/dXカット条件で、

- ・TPC内部で止まったイベントのほぼ100%選択
- ・TPC外部へ突き抜けたイベントのうち90%除去

できている

飛跡解析における飛程の求め方、カット条件は妥当

飛跡解析検証 …… シミュレーションに飛跡解析手法を適用 散乱点について

真の散乱点からの3次元距離

飛程 依存性

真の散乱点からのXY平面距離

 散乱点の決定精度は、
 ほぼXY平面距離できまっている
 → コインシデンスのゴーストが問題 コインシデンスのとり方を工夫する
 飛程依存性が顕著
 → 飛程によって解析方法を変える

反跳方向についての解析は今後の課題

2値画像処理を用いた飛跡解析手法

コインシデンスを取らずに2次元画像のままで

飛跡は信号ON/OFFの2値画像

● ETCC用に飛跡取得アルゴリズムを再設計 専用の飛跡解析手法を考案 → 30cmETCCに反映済み

● 検出効率

▶ 5-10倍改善

▶シミュレーションと30%以内で一致

●角度分解能
 ▶ ARM 8.2° → 5.8° @662keV
 ▶ SPD 90-200° → ~90° (@356keV, @511keV, @662keV)

- dE/dXカットがBG除去に有効であることを、
 シミュレーションで確認
- 飛跡解析の問題点および、改良の方向性の示唆を得た (コインシデンスのゴースト、飛程依存性)
- 二値画像処理を用いた飛跡解析手法