TIPP09 Electron Tracking Compton Gamma-ray Camera for Drug Design and Medical Imaging EPOCHAL TSUKUBA March 14, 2009

Shigeto Kabuki¹, Hidetoshi Kubo¹, Kentaro Miuchi¹, Hiroyaki Kimura², Hiroo Amano², Hidekazu Kawashima³, Masashi Ueda³, Yuji Makamoto³, Kori Togashi³, Hideo Saji², and Toru Tanimori¹

 I, Department of Physics, Graduate School of Science, Kyoto University;
 2, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University;

3. Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University

S.Kabuki¹, K.Hattori, C.Ida, S.Iwaki, H.Kubo, R.Kurosawa, K.Miuchi, H.Nishimura, J. Pakrer, M.Takahashi,T.Tanimori, K.Ueno, *Department of Physics, Kyoto University, Japan*

> H.Kimura, H.Amano, H. Kawashima, H.Saji, M.Ueda Department of Patho-Functional Bioanalysis ,Kyoto University, Japan

Y.Nakamoto, T.Okada, K.Togashi Department of Diagnostic Imaging & Nuclear Medicine, Kyoto University, Japan

R.Kohara, T.Nakazawa, O.Miyazaki, T.Shirahata, E. Yamamoto *Hitachi Medical Corporation, Japan*

> A.Kubo, E.Kunieda, T.Nakahara Department of Radiology, Keio University, Japan

> > K.Ogawa

Department of Electronic Informatics, Hosei University, Japan

- Molecular imaging & Motivation
- Principle of Electron Tracking Compton Camera
- Performance of Electron Tracking Compton Camera
- New drug design for molecular imaging
 Summary

Molecular Imaging

Image the morbid life phenomenon and physiology of the living body at molecular level from the outside the body

(Radiology, 219 (2001).)

Molecular Imaging

Features of ETCC to molecular imaging

Electron Tracking Compton Camera (ETCC)

- : Wide field of view
- : Wide energy dynamic range

New lots of RI available

- **D** The development of new RI drug.
- **D** Long life nuclide, metal nuclide
 - \Rightarrow visualize the anti body, enzyme, protein reaction

Multi-RI Imaging

□ Simultaneous observation of plural metabolism and interaction

Principle of Electron Tracking Compton Camera (ETCC)

Electronic track is caught with an original detector (Three patents).

•An arrival direction of the gamma ray is calculated for every event. •Noise is rejected by momentum and geometry information α .

$$\cos \alpha = \left(1 - \frac{m_e c^2}{E_g}\right) \sqrt{\frac{K_e}{K_e + 2m_e c^2}}$$

Gamma-ray Imaging

Schematic view of µ-PIC technology

GSQ and LaBr₃ Scintillator

10x10cm² Camera (GSO or LaBr₃)

- Number of pixels: 576
- Pixel size $6 \times 6 \times 13 \text{mm}^3$ (GSO) $6 \times 6 \times 15, 20 \text{mm}^3$ (LaBr₃)
- GSO Enery resolution :10.0 % (@662keV,FWHM)
- LaBr₃ Energy resolution: 6.5% (@662keV,FWHM)
- Position resolution: 6mm

S. Kurosawa Calorimeters IV

10x10cm² Camera 30x30cm² Camera 180cm Scintillator. μTPC μTPC 150CM 120CM 60cm K. Ueno poster C-5

11

Imaging Method

List mode Maximum Likelihood Expectation Maximization (Listmode MLEM)

10cm line source 365 keV image

List mode MLEM

Energy Dynamic Range

Measured sources

	Ce-	Cr-	Ba-	-	Au-	Na-	F-	Cu-	Cs-	Mn-	Fe-	Zn-	Co-
	139	5 I	133	3	198	22	18	64	137	54	59	65	60
Energ y [keV]	167	320	354	364	412	511, 1275	511	511	662	835	1095, 1292	1116	73, 333

Energy dynamic range : 167 – 1333 keV.

Spatial Resolution

Spatial resolution vs. Energy

Goal : Same resolution as human PET @ 511keV

Uniformity of the Field of View Keio University

Uniformity $|x, y| < 7 \text{ cm} : 11.1\% (1 \sigma)$

Example Images

Medical imaging Kyoto university medical & pharmaceutical department

Molecular Imaging I-131-5IA nAChRs imaging Drug Delivery System (DDS) Au-198-nanoparticles Double Clinical Tracer Imaging FDG & I-131-MIBG High energy nuclide Imaging Zn-65-porphyrin Imaging

I-131-5IA acetylcholine receptor imaging (365keV)

I-131-5-IA nAChR imaging

I-131-5IA have been developed by the H. Saji lab for molecular imaging. We performed the imaging of nicotine acetylcholine receptor (nAChR) in the rat central nervous system using I-131-5IA.

The high accumulation in the brain was visualized. ¹⁸

Drug Delivery System (DDS)

Drug carrier candidates

TUS Yuasa lab. WEB page

Another Chemical reagent study

E.G. Stomach Cancer

This probe is available for the stomach cancer that it is hard to detect using FDG.

Porphylin +⁵⁹Fe, ⁵⁴Mn, ⁶⁵Zn imaging using ETC₂

Compton Camera has a wide energy dynamic range and wide field of view.

- We have developed the ETCC camera for molecular imaging.
 - Spatial resolution 11mm(FWHM)@511keV
 - **D** Uniformity 11.1% (1 σ)
- We have studied the new probes for molecular imaging.
 - I-131-5IA
 - double tracer I-131-MIBG & FDG
 - Au-198 DDS
 - Zn-65-Porphyrin