京大における GEMの使用状況

2009/5/22 GEM研究会@東大 京大 岩城 智

現在京大にあるGEM

厚み	hole	Pitch	size	材質	加工方法	加工会社	
50	70	140	10*10cm ²	PI		SciEne	標準
50	70	140	10*10cm ²	LCP	laser	SciEne	未評価
100	70	140	10*10cm ²	LCP	laser	SciEne	
125	70	140	10*10cm ²	LCP	laser	SciEne	
400	300	700	10*10cm ²	G10	ドリル	林栄	
50	70	140	23*28cm ²	PI		渕上ミクロ	一体
50	70	140	23*28cm ²	PI		SciEne	分割
50	70	140	23*28cm ²	LCP	laser	SciEne	分割
50	90	140	20*20cm ²	LCP	laser	SciEne	未使用
400	300	700	30*30cm ²	G10	ドリル	林栄	未使用

- GEMの取り扱いは クリーンルームで作業
- パーティクルモニター
 0.3um:~10000個/m³
 1.0um:0?

5.0um:0?

 実際には容器内についた ほこりや金属のカスなどで もっと汚いと思われる。

検出器 μ -PIC(Micro Pixel Chamber)

400 µ m

■典型的なTotal gain:~**30000** (µ-PIC ~3000 × GEM ~10)

■エネルギー分解能: ~30%(FWHM)@5.9keV(100cm²)

■µ-PICのピッチがGEMのピッチより荒い ため位置分解能はµ-PICで決まると考え 今回は特に評価なし。

厚GEM

100,125µm厚GEM(サイエナジー) 400µm厚GEM(林栄精器)

材質:液晶ポリマー サイズ:10×10cm²

材質:G10 サイズ:10×10cm²

◆ 50 µ m厚に比べて放電耐性が
 上がるため、gainが向上することが
 期待される

10cmGEM使用状況

- •マウント: PI製は接着剤を用いてG10の枠に固定 LCP製はナイロンネジでPVCの枠に固定。
- •ガス: 基本はAr+C2H6(90:10) 1atm 封じ切り 用途に応じてXe+C2H6(70:30) 1atmや CF4 0.2atm なども使用

$50\,\mu$ m & $100\,\mu$ m GEM

μ m & 400 μ m GEM

μ m , 100 μ m , 125 $\,\mu$ m & 400 μ m

Gainのinduction field依存

大きい以外はふつうのGEM
 (t:50、P:140、H70、PI製)

0.8mm

不感領域:~2%

分割大判GEM:一部導通しても他の箇所は大丈夫

これ以上のサイズは材料的に難しいらしい

大判GEM使用状況

大GEM+30cm角 µ-PIC 基本性能

maximum gain : 50000
Stable gain : ~30000
(μ-PIC :3 × 10³ GEM:10)

Gain uniformity (µ-PIC + GEM) Gain uniformity :rms 13.9 % (GEM単体でのデータは無し) (10cm × 10cm :5%)

μ-PIC+GEMのtotal gain 10日間2.7×10⁴での安定動作

大GEM+30cm角 µ-PIC 基本性能

エネルギー分解能 FWHM 37.5% (31.0 keV)

エネルギー分解能は59.5 keVで 悪くなっている (おそらくASDのsaturation)

まとめ

- 厚型GEM
 - 100 μ m厚、125 μ m厚ともに高いgain(~500)
 gainは50 μ mと比較して時間安定性が高かった
- 大型GEM

- Gain~10倍で安定動作

スペクトル

• Energy spectra from the whole volume

