Micro Pixel Chamber Operation with Gas Electron Multiplier

Kyoto University dept. of physics Cosmic-ray group <u>K. Hattori</u>

Contents

1. μ-PIC (Micro Pixel Chamber),

micro-TPC (Time Projection Chamber based on µ-PIC)

2. For detection of MIPs

μ-PIC + GEM (gas electron multiplier)

3. Performance of GEM + µ-PIC TPC

4.Summary

Advanced Compton Camera

based on Micro Pixel Chamber(µ-PIC)

sub MeV ~ MeV gamma-ray Compton scattering is dominant

micro-TPC

energy and track of a recoil electron

scintillator(surrounding micro-TPC)
energy and position of
a scattered gamma-ray

1photon : reconstruct completely energy & direction

low background images Improvement of micro-TPC

Position Sensitive Detectors

Positive ion feedback

Fractional ion current I_D/I_A

- I_{D} : the ion current on the drift plane
- I_A : the electron current on anodes of μ -PIC

the dependence of the fractional ion current on the gain of the GEM

Ion feedback less than 10% (a) gas gain > 10

total 10% μ-PIC 30% × GEM 30%

GEM suppresses the positive ion feedback in a drift region **PIC** Potential of μ -PIC + GEM system for high-rate condition operation

Position resolution

Difference between hit points and tracks obtained from fitting

2-dimensional Gauss distribution (the position resolution in the direction of a track is unknown)

$$\frac{\sqrt{2\pi}}{\sigma} r \exp(-\frac{r^2}{2\sigma^2}) dr$$
$$\implies \sigma \sim 370 \mu m$$

transverse diffusion 460µm Z-pitch (DAQ clock) ~ 400µm ➡ reasonable

Summary & Future Works μ-PIC + GEM

stable gas gain of 2×10^4 , ion feedback < 10%

μ -PIC + GEM TPC

- Fine tracks of MIPs were obtained. track efficiency 97% 30
 - position resolution 370μm

Future Works

 $\mu\text{-}PIC$ & GEM with a larger detection area

about 30cm × 30cm(takada's poster)

φ70μm pitch 140μm standard design 7th International Conference on Position Sensitive

Performance of μ –PIC (Micro Pixel Chamber)

2-dimensional imaging gaseous detector

anode 256 \times cathode 256 ~ 65000pixels

Max gas gain ~ 15000

10cm

Stable operation for 1000h (gas gain ~ 6000) **Energy Resolution**

30%(FWHM)@5.9keV(100cm²

~ 120µm

position resolution

Performance of μ –PIC - uniformity -

 $\sigma \sim 7\%$

μ-TPC

GEM

Mask by Hamagaki Lab. (a) CNS Univ. of Tokyo

Plasma etching method

@Fuchigami Micro Co., Ltd.

Holes with cylindrical shape

CERN :

holes with a double-conical shape

Setup

ce on Position Sensitive Detectors

Dependence of total gain on induction field

 $\Delta V_{GEM} = 250 V(gain 10)$ E_D = 0.5kV/cm

plateau wasn't observed

the system unstable (a) gas gain of $\sim 10^5$

Performance of micro-TPC

- uniformity -

0.1 7th International Col

Performance of Hybrid micro-TPC - gamma – ray -

