Performance of "µ-PIC" Gaseous Area Detector in Small Angle X-ray Scattering Experiments <u>Kaori Hattori</u>^{1,2}, Ken'ichi Tsuchiya^{1,2}, Kazuki Itoh², Yoko Okada¹, Kotaro Fujii³, Hidetoshi Kubo^{1,2}, Kentaro Miuchi^{1,2}, Masaki Takata^{2,4}, Toru Tanimori^{1,2}, Hidehiro Uekusa³ 1. Kyoto Univ., Japan 2.RIKEN Harima Instit./Spring-8, Japan 3.Tokyo Instit. of Technology, Japan 4.Spring-8/JASRI, Japan We report on the development of a two-dimensional photon-counting detector based on a Micro Pixel Gas Chamber (μ -PIC) for high-resolution Small Angle X-ray Scattering (SAXS) and for time resolved X-ray structure analysis. The μ -PIC is a micro-pattern gaseous detector fabricated with printed circuit board technology. In this article, the performance of the μ -PIC in SAXS experiments at SPring-8 is described. We obtained a dynamic range of over 10^5 for X-ray diffraction by PSLatex. The maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks in high angle region were observed in one accumulation of photons. ## Road to a New Method for Structural Analysis ## Requirements for a photon counting area detector - 1. Position resolution better than 100 µm - 2. Counting rates > 10⁷mm⁻², >1000 × MWPC (irradiated locally) a wide dynamic range and time resolved experiments) - 3. Large size of active area $> 15 \times 15$ cm² - 4. No dead region (ex. junctions) - 5. Efficiency difference < 1 % - 6. Image distortion < 1 % - 7. Operation at room temperature, low power consumption - 8. Easy maintenance - 9. Low costs A photon counting area detector based on a Micro Pixel Chamber (µ-PIC) has realized $\,4,6,7,8,$ and 9. - 1, 2, and 5 are in progress. - 3. A n active area of a μ -PIC currently in use is $10 \times 10 \text{cm}^2$ - A μ -PIC with an active area of 30 \times 30 cm² has proved stable runs. - → Verification experiments at a synchrotron radiation facility are being planned. # What is a Micro Pixel Chamber (µ-PIC)? √The output charges of the 256+256 channels are parallel pre-amplified, shaped, and discriminated by the ASD chips. \checkmark All discriminated digital signals are sent to the position encoding module based on FPGAs with an internal clock of 100 MHz, so that the anode and cathode coincident position = (X, Y) and the timing, t, are recorded into the memory module. # Performance studies of a μ-PIC irradiated with intense X-rays at Spring-8 #### Linearity in a data acquisition rate The DAR and the leakage current show a good linear correlation from 20 cps to 5 Mcps (over 10⁵). Stable operation at 5 MHz Good linearity in low counting rate environments #### **Dynamic Range** Dynamic range of over 10⁵ was achieved. Our goal: 10⁷⁻⁸ → further improvements efficiency, uniformity #### **Image distortion** Target: SiO2 (110 nm, 5mg/ml) X-rays: 13.8 keV Raw data ✓No efficiency calibration ✓No image distortion ✓ Proved uniformity # Time-resolved X-ray diffraction #### Changes of a diffraction pattern in 20 sec Dehydration reaction of a pyromellitic acid hydrate occurs when heat is applying. A weight fraction of the dehydrate, x, was observed for 20 s using a μ -PIC. The intensity $I(2\theta,t)$ is expressed as $I=xI_d(2\theta)+(1-x)I_h(2\theta)$, where $I_d(2\theta),I_h(2\theta)$ is the intensity of the dehydrate, the hydrate, respectively, including a background. # **Summary and Future Works** | | Current Status | Goal | |--------------------------|---------------------------------------|-------------------| | Pixel pitch | 400 µm | 200 µm | | Position resolution | 120 µm | 60 µm | | Number of channels | 256 × 256 | 1500 × 1500 | | Active area | 10 cm × 10 cm | 30 cm × 30 cm | | Gain | 5 × 10 ³ - 10 ⁴ | > 104 | | Gain variation | 3.7 % | 1 % | | Global counting rates | < 5MHz | 10MHz | | Dynamic Range | <106 | 10 ⁷⁻⁸ | | Uniformity of efficiency | ~several % | < 1% | | Image distortion | < 1% | <1% | [1] F. Sauli Nucl. Instr. and Meth. A 386 (1997) 531-534 URL http://www-cr.scphys.kyoto-u.ac.jp/index-e.html E-mail hattori@cr.scphys.kyoto-u.ac.jp